



# Principles of Antimicrobial

Assistant Prof. Dr. Ayad almakki

Department of Clinical Laboratory Science

College of Pharmacy

2 nd stage

Medical microbiology I

**University of Basra** 

1

#### In previous lecture

Sterilization

**Physical & Chemical methods** 

#### In this lecture

Principles of Antimicrobial

## Lecture topics

- **≻**Chemotherapy
- > Classification of Antimicrobials
- **≻**Mechanism of action
- >Antibiotic resistance
- **➤** Mechanisms of resistance gene transfer
- > Example on mechanisms of resistance
- >Antimicrobial susceptibility test

# Chemotherapy

#### Drugs used in treating infectious diseases and cancer

- Infectious diseases are a major cause of death worldwide (Kozier, et al. 2008)
- The control of the spread of microbes & the protection of people from communicable diseases and infections are carried out on the international, national community, and individual levels

# What are Antimicrobials?

- Antimicrobials are drugs that destroy microbes, prevent their multiplication or growth, or prevent their pathogenic action
- ✓ Differ in their physical, chemical, and pharmacological properties
  - Differ in antibacterial spectrum of activity
- Differ in their mechanism of action

# What is a good antibiotic?

- ✓ Soluble , not protein bound
- ✓ Stable and unaltered in tissues
- ✓ Good therapeutic Index (TI)= toxic dose/ therapeutic dose
- ✓ Not allergic

- A- According to source
- **B- According to mechanism of action**
- C- According to antimicrobial spectrum

#### A- According to source

1- Natural compounds: e.g. penicillin, chloramphenicol



- 2-Synthetic compounds: e.g. sulfonamides, quinolones
- 3- Semisynthetic compounds:
- e.g. ampicillin



#### **B- According to mechanism of action**

1- Inhibit cell wall synthesis

- Penicillins
- Cephalosporins
- Carbapenems
- Vancomycin
- 2- Inhibit protein synthesis
  - Chloramphenicol
  - Tetracyclines
  - Clindamycin



#### **B- According to mechanism of action**

3- Inhibit nucleic synthesis

- Rifamycins
- Quinolones

4- Inhibit folate metabolism

Interference with metabolism of microorganisms

Paraaminobenzic acid (PABA) → Folic acid → Folinic acid

- Sulfonamides
- Trimethoprim



#### Mechanism of action



#### **C- According to antimicrobial spectrum**

- 1- Narrow spectrum drugs
- Drugs affect mainly Gram +ve bacteria e.g. benzyl penicillin
- Drugs affect mainly Gram -ve bacteria e.g. aminoglycosides
- 2- Extended spectrum drugs
  - Agents that affect Gram +ve and Gram -ve bacteria
- 3/Broad spectrum drugs
- Agents act on wide range of Gram +ve and Gram –ve bacteria and others (protozoa) e.g. Tetracyclines

# **Spectrum of Activity**

#### Broad spectrum vs Narrow spectrum



## **Antibiotic resistance**

Antimicrobial resistance (AMR or AR) is the ability of a microbe to resist the effects of medication that once could successfully treat the microbe.

#### I- Innate resistance

- / Is a⁄feature of a particular species of bacteria e.g. Pseudomonas
- The gene(s) of resistance can be transferred between bacteria by transfer of naked DNA (**Transformation**), by **Conjugation** with direct cell-to-cell transfer of extrachromosomal DNA (plasmids), or through bacteriophage (**Transduction**)

## Mechanisms of resistance gene transfer



Dr. Ayad almakki

15

### **Antibiotic resistance**

#### I- Acquired resistance

- Occurs when bacteria that were sensitive to certain antibiotic become resistant with time
- Meçhanisms responsible
- 1- Production of enzymes that inactivate the drug (e.g. beta lactamase)
- 2- Alteration of drug binding site (e.g. penicillin binding protein)
- 3-/Reduction in drug uptake by the organism (efflux pump)
- A-Development of altered metabolic pathways (e.g.sulfa drugs)

## **Acquired Bacterial Resistance**



- Generating enzymes that inactivate the antibiotic (beta lactamase)
- > Changing structure of target site e.g. PBP's (beta lactams and aminoglycosides)
- ➤ Preventing cellular accumulation of antibiotic by altering outer membrane proteins or using efflux pumps e.g. G-ve
- Changing the metabolic pathway that is being blocked (sulfa drugs)
- > Overproducing the target enzyme or protein to overpower the effects of antibiotics
- Mycoplasma lacks a cell wall making it impervious to penicillin's
- Sulfonamides have no impact on bacteria that obtain their folate from environment

## Resistance study

#### Antimicrobial susceptibility tests:

- Minimal inhibitory concentration (MIC)
- The lowest concentration of drug that prevents visible bacterial growth after 24 hours of incubation in a specified growth medium
  - 1-Liquid media (dilution)
  - 2-Solid media (diffusion)

## Antimicrobial susceptibility test

❖Liquid media (dilution)



## Antimicrobial susceptibility tests

#### Solid media (diffusion)

- -Disk diffusion
- Report organisms(s) and susceptibilities to antimicrobials
- ✓ Susceptible (S)
- ✓ Intermediate (I)
- ✓ Resistant (R)





## Antimicrobial susceptibility tests

#### -E-tests

Plastic strips with a predefined gradient of one antibiotic

- One strip per antibiotic
- Wide range of antibiotics
- Easy to use



# Thank you for your attention

Any Questions